\qquad

Section 1.4 Continuity and One-Sided Limits

Continuity at a Point and on an Open Interval

Three conditions exist for which the graph of f is not continuous at $x=c$.
Figure 1.25

Definition of Continuity

Continuity at a Point: A function f is continuous at \boldsymbol{c} if the following three conditions are met.

1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

Continuity on an Open Interval: A function is continuous on an open interval (a, b) if it is continuous at each point in the interval. A function that is continuous on the entire real line $(-\infty, \infty)$ is everywhere continuous.

(a) Removable discontinuity

(b) Nonremovable discontinuity

(c) Removable discontinuity
\qquad

Section 1.4 Continuity and One-Sided Limits

Continuity at a Point and on an Open Interval

Three conditions exist for which the graph of f is not continuous at $x=c$.
Figure 1.25

Definition of Continuity

This definition is on the First Te
Continuity at a Point: A function f is continuous at c if the following three conditions are met.

1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

Continuity on an Open Interval: A function is continuous on an open interval (a, b) if it is continuous at each point in the interval. A function that is continuous on the entire real line $(-\infty, \infty)$ is everywhere continuous.

(a) Removable discontinuity

(b) Nonremovable discontinuity

(c) Removable discontinuity

Discuss the continuity of each function.
Ex. $1 f(x)=\frac{1}{x^{2}-9}=\frac{1}{(x+3)(x-3)}$
$(x+3)(x-3)=0$
$x+3 \stackrel{\text { ithe }}{=}$, or $x-3=0$
$x=-3 \quad x=3$
2 Non-Ramora bole
Discontinuitues

oxleal 3 \& oneat -3

Ex. $2 g(x)=\frac{x^{2}-4 x-5}{x+1}$

$$
g(x)=\frac{(x+1)(x-5)}{(x+1)} \approx x-5
$$

Removaile
Piscontinuits at-1

Ex. $3 h(\theta)=\csc (\theta)$

$$
\begin{aligned}
& h(\theta)=\csc (\theta) \\
& h(\theta)=\frac{1}{\sin (\theta)}
\end{aligned}
$$

Non-remownlole
Drecontinurties at $A \cdot \pi$, whe $n=0, \pm 1, \pm 2, \ldots$

One-Sided Limits and Continuity on a Closed Interval

(a) Limit as x approaches c from the right.

$$
\lim _{x \rightarrow c^{+}} f(x)=L .
$$

limit from the right

Ex. 4

$\lim _{x \rightarrow 0} \sqrt{x}=0$
$x \rightarrow 0^{+}$
$\lim _{x \rightarrow 0} \sqrt{x}=D N E$,
$x \rightarrow 0^{-}$

(b) Limit as x approaches c from the left.

$$
\lim _{x \rightarrow c^{-}} f(x)=L
$$

limit from the left

$$
\lim \sqrt[3]{x}=0
$$

$$
x \rightarrow 0^{+}
$$

$$
\lim _{x \rightarrow 0} \sqrt[3]{x}=0
$$

$$
x \rightarrow 0^{-}
$$

Ex. 5

$$
\llbracket x \rrbracket=\text { greatest integer } n \text { such that } n \leq x .
$$

Greatest integer function
When the limit from the left is not equal to the limit from the right, the (twosided) limit does not exist.

THEOREM I. IO The Existence of a Limit
Let f be a function and let c and L be real numbers. The limit of $f(x)$ as x approaches c is L if and only if

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L
$$

Definition of Continuity on a Closed Interval
A function f is continuous on the closed interval $[\boldsymbol{a}, \boldsymbol{b}]$ if it is continuous on the open interval (a, b) and

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { and } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

The function f is continuous from the right at a and continuous from the left at b (see Figure 1.31).

Ex. $6 f(x)=\sqrt{9-x^{2}}$

THEOREM I.II Properties of Continuity

If b is a real number and f and g are continuous at $x=c$, then the following functions are also continuous at c.

1. Scalar multiple: $b f$
2. Sum and difference: $f \pm g$
3. Product: $f g$
4. Quotient: $\frac{f}{g}, \quad$ if $g(c) \neq 0$

The following types of functions are continuous at every point in their domains.

1. Polynomial: $\quad p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$
2. Rational: $\quad r(x)=\frac{p(x)}{q(x)}, \quad q(x) \neq 0$
3. Radical: $\quad f(x)=\sqrt[n]{x}$
4. Trigonometric: $\sin x, \cos x, \tan x, \cot x, \sec x, \csc x$

By combining Theorem 1.11 with this summary, you can conclude that a wide variety of elementary functions are continuous at every point in their domains.

THEOREM I.I2 Continuity of a Composite Function

If g is continuous at c and f is continuous at $g(c)$, then the composite function given by $(f \circ g)(x)=f(g(x))$ is continuous at c.

Ex. 7 Describe the intervals on which the following functions are continuous.
(a) $f(x)=\frac{x+1}{\sqrt{x}}$

f is continuous on $(0, \infty)$
$\sqrt{x}=0$
$(\sqrt{x})^{2}=0^{2}$
$x=0$
$f(x)=\frac{x+1}{\sqrt{x}}$

(b)

$$
\begin{gathered}
g(x)=x \sqrt{x+3} \\
x+3 \geqslant 0 \\
x \geqslant-3 \\
\text { cts }^{\prime \prime} \text { on }[-3, \infty]
\end{gathered}
$$

(c) $h(x)=\cos \left(\frac{1}{x}\right)$

(d) $f(x)=\left\{\begin{array}{cc}2 x-4, & x \neq 3 \\ 1, & x=3\end{array}\right.$

$$
\frac{y=m x+b}{m=\frac{2}{1}, b=-1}
$$

THEOREM I.I3 Intermediate Value Theorem
If f is continuous on the closed interval $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[a, b]$ such that

$$
f(c)=k
$$

Ex. 8 Verify that the Intermediate Value Theorem applies to $f(x)=x^{2}-6 x+8$ on $[0,3]$, and then the value of c guaranteed by the theorem, where $f(c)=0$. \qquad 18t: $f(x)=x^{2}-6 x+8$ is a "ts" polyumixal
$2^{n d}:[0,3]$ is x closed interval,
\qquad $f(a)=f(0)=(0)^{2}-6(0)+8=8$ $f(b)=f(3)=(3)^{2}-6(3)+8=9-18+8=-1$

$$
-1 \leq k \leq 8
$$

$$
-1 \leq 0 \leq 8
$$

$$
f(3) \leq k \leq f(0)
$$

The outinat espredrition ad the outinut must match.

$$
\begin{aligned}
& \text { number line. } \\
& y=f(x) \text { needs to "conwect" at } x=1 \\
& 9
\end{aligned} \text {. }
$$

$$
\lim _{x \rightarrow 1^{-}} f(x)=f(u)=\lim _{x \rightarrow 1^{+}} f(x)
$$

$\begin{gathered}\text { Pdynomida } \\ \lim _{x \rightarrow 1^{-}}\end{gathered}\left[3 x^{3}\right]=3(1)^{3}=\lim _{x \rightarrow 1^{+}}(a x+5)$ "宅要"

$$
\underset{\substack{\text { plug-in } \\ \text { x-value" }}}{\text { "cs }} \rightarrow 3(1)^{3}=3=a(1)+s
$$

x-value"

$$
\begin{gathered}
3=a+s \\
-5+3=a \\
-2=a \\
f(x)=\left\{\begin{array}{l}
3 x^{3}, \quad x \leq 1 \\
-2 x+5, x>1
\end{array}\right.
\end{gathered}
$$

