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This definition is on the First Test .T•E



Discuss the continuity of each function.  

Ex.1  
  
f x( ) = 1

x2 − 9  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ex.2  
  
g x( ) = x2 − 4x − 5

x +1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex.3    h θ( ) = csc θ( )  
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One-Sided Limits and Continuity on a Closed Interval 

               

              
 limit from the right  limit from the left 
 
 

Ex.4   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ex.5   

 
When the limit from the left is not equal to the limit from the right, the (two-
sided) limit does not exist. 

y
-

- Tx
a

Lingo rx  =D At E
. ✓

.

÷÷÷÷::* .

¥ .

I i
in Tx = O

X -2 o

I im Vx = o

X -7 o
t

I im A-
o

X  → o
-

fish
,

A xD =D
.

N
.

E
.

ties
,

+

a xD = - I

I im I xD = - 2
X -7 - I

-

fine
,

.

Mt t the, +

HB



 

 

 
Ex.6    f x( ) = 9− x2  
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Ex.7  Describe the intervals on which the following functions are continuous. 
 

(a)  
  
f x( ) = x+1

x  
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(b)    g x( ) = x x + 3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)  
  
h x( ) = cos 1

x
⎛
⎝⎜

⎞
⎠⎟

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d)  
  
f x( ) = 2x − 4, x ≠ 3

1, x = 3
⎧
⎨
⎪

⎩⎪
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Ex.8  Verify that the Intermediate Value Theorem applies to   f x( ) = x2 − 6x + 8  on  0,3[ ] , and then 
the value of  c   guaranteed by the theorem, where   f c( ) = 0 . 
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Ex.9  Find the constant  a  such that 
  
f x( ) = 3x3 , x ≤1

ax + 5, x >1
⎧
⎨
⎪

⎩⎪
 is continuous on the entire real 

number line. 
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